

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Not just text: using Micron's Automata Processor in particle physics research

Chris Green, Mike Wang. SC15, Austin, TX. Nov 18, 2015.

Particle Physics and Fermilab

Study fundamental particles and interactions to understand the nature of matter and energy:

- "Big-Bang recreation."
- Neutrino physics.
- Structure and formation of the Universe.

Anatomy of a particle-physics experiment

- Needle-in-haystack: need 100T collisions to see 1 Higgs!
- Lots of data: >20PiB/y from CMS alone.
- High rates: 40M collisions/sec, each with around 140 (mostly boring) simultaneous interactions in phase II (planning for 5+ years from now).
- Some detectors read out more slowly, and can't keep every event, so two-tier trigger required.

Anatomy of a particle-physics experiment

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

The CMS phase II Pixel detector and trigger

❖ Fermilab

Turning physics data into a pattern recognition problem

A simplified problem to start ...

Limitations: 8-bit symbols, need latches, need all 4 hits.

An automata network to match one track pattern

Scaling up

- Shown is a pattern matching unit for one interesting hit combination: with a grain size of 4 pixels per hit "address", this is 419760 r-ø units and 1,137,644 r-z units.
- Exploring pattern re-use through geometric (e.g. rotational, translational, mirror) symmetries.
- Explore tradeoffs with granularity vs resource use.
- Studying readout speeds, latched results, symbol reloading.
- May be used in other areas, not just low level trigger.

Finally ...

- Funded development work will also include a study of hit detection with timing in liquid argon tracking detectors for neutrino and dark matter experiments.
- Initial work looks promising: looking forward to hardware via Center for Automata Processing at the University of Virginia.
- Thanks:
 - Fermilab's LDRD program for supporting and funding this project.
 - UVA CAP, especially Kevin Skadron, Tho Nguyen, Ke Wang, Jeff Fox.
 - Micron, especially T. Leslie, M. Tanner, M. Grimm.
 - CMS, especially T. Liu, O. Gusche, D. Christian.

